
Supplementary Material for
Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds

Siyuan Huang1,˚, Yichen Xie2,˚, Song-Chun Zhu3,4,5, Yixin Zhu3,4

1 University of California, Los Angeles 2 Shanghai Jiao Tong University
3 Beijing Institute for General Artificial Intelligence 4 Peking University 5 Tsinghua University

https://siyuanhuang.com/STRL

1. Experimental Details

In this section, we provide additional details about net-
work architectures in Sect. 1.1 and 1.2, respectively.

1.1. Network Architecture of STRL

As shown in Fig. 2 in the main text, the proposed spatio-
temporal representation learning (STRL) framework con-
sists of three components: online network, target network,
and predictor. Online and target networks are both com-
posed of an encoder and a projector. The encoders fol-
low different backbone architectures with minimal modifi-
cations; see Sect. 1.2. Below, we clarify the structure of the
projector and predictor.

Projector The projector contains two fully connected
(FC) layer with output size of hidden size sh and projection
size sp, respectively. A batch normalization and a ReLU ac-
tivation layer are inserted between the two FC layers. The
input of the first FC layer is the encoder’s output, whose
dimension differs on the basis of downstream tasks.

Predictor The predictor has a similar structure to the
projector. It also consists of two FC layers with an output
size of sh and sp. The batch normalization and ReLU acti-
vation layers are structured in the same fashion as the ones
in the projector. The projector’s output of the target network
serves as the predictor’s input.

We follow Grill et al. [2] and set the hyper-parameters
sh “ 4096 and sp “ 256.

1.2. Training Details

Below, we specify the training details for each down-
stream task described in the main text, including 3D
shape classification, 3D semantic segmentation, and 3D in-
door/outdoor object detection. For all downstream tasks, we
adopt Adam optimizer [3] and LARS wrapper [8].

* indicates equal contribution.

1.2.1 Shape Classification

Backbone We adopt two practical backbones—
PointNet [5] and DGCNN [7]—for shape classification
task. We extract the global feature after the last max-pooling
layer as the encoder output.

Linear Classification During pre-training on
ShapeNet, we set the learning rate as 0.001 with a
cosine decay. For PointNet, we train the model with a batch
size of 48 for 50 epochs. For DGCNN, we train the model
with a batch size of 32 for 100 epochs. Next, we fit a linear
Support Vector Machine (SVM) on the representation of
the ModelNet training set and evaluate it on the test set.
The linear SVM has the default parameters of C “ 1.0 and
tol “ 1e ´ 3. For both models, we randomly select 2,048
points for each shape in both pre-training and training.

Supervised Fine-tuning In the pre-training process,
we set the learning rate as 0.001 with a cosine decay. Only
the DGCNN model is adopted in this task; we pre-train it
on ShapeNet with a batch size of 32 for 100 epochs. Dur-
ing the fine-tuning process, we follow all the parameters as
described in Wang et al. [7], except reducing the training
epoch from 250 to 125 since our pre-trained weight helps
accelerate the supervised training. For pre-training and fine-
tuning, we select 1,024 points for each shape.

1.3. Semantic Segmentation

We adopt the DGCNN network as the backbone. Like
3D shape classification, we extract the 1024-d embedding
after the last max-pooling layer as the encoder’s output.

We pre-train the network on the processed ScanNet
dataset for 100 epochs with a batch size of 28, setting the
learning rate as 0.001 with a cosine decay. We extract a
keyframe per 10 frames and select a window size of 10
keyframes when choosing adjacent frames.

When fine-tuning the pre-trained model, we follow the
setting as in Wang et al. [7] to train the model on each area
of the S3DIS dataset for 100 epochs. We use the SGD opti-
mizer with a learning rate of 0.1 (cosine decay) and a batch
size of 32. We randomly select 4,096 points for each frame
during pre-training and each block during fine-tuning.

1

https://siyuanhuang.com/STRL


1.4. Indoor 3D Object Detection

Backbone We adopt the VoteNet model with the Point-
Net++ backbone. By adding a max-pooling layer at the end
of the backbone, we obtain a global feature of 256-d em-
bedding with the encoder, further fed into the projector.

Training Parameter Same as 3D semantic segmenta-
tion, we extract a keyframe every 10 frames to process the
ScanNet dataset for pre-training. Next, a window size of 10
keyframes is chosen to find adjacent frames. We use a learn-
ing rate of 0.001 with a batch size of 32 for 100 epochs in
the pre-training process. When fine-tuning the pre-trained
model, we follow the settings as in Qi et al. [4] to train the
model for 180 epochs. The learning rate is set as 0.001 and
decayed by 0.1 at the step of 80, 120, 160. We use a batch
size of 8. In both processes of pre-training and fine-tuning,
we randomly select 20,000 points for each scene.

1.5. Outdoor 3D Object Detection

Backbone We adopt the PV-RCNN model with the
Sparse Convolution backbone. Additionally, we also add
a max-pooling layer at the end of the backbone. A 128-d
global feature is obtained as the output of the encoder.

Training Parameter We pre-train the model on KITTI
raw data with a learning rate of 0.004 (cosine decay) and a
batch size of 32 for 50 epochs. We sub-sample the point
cloud frames per second as keyframes and use a window
size of 5 keyframes. In the fine-tuning process, we keep the
same settings as in Shi et al. [6]. We train the model with a
learning rate of 0.01 for 80 epochs on the KITTI object de-
tection benchmark training set. Since the input is voxelized
in both pre-training and fine-tuning, we pass all points to
the model without random sampling.

2. Generalizability Analysis
In the Sect. 5.3 of the main text, we have described some

cross-domain experiments to analyze the generalizability of
pre-training between synthetic shapes and natural scenes.
Here, we supplement an extra experiment to transfer the
ShapeNet pre-trained DGCNN model to the 3D semantic
segmentation task. We follow the setting in Sect. 5.2.2 of
the main text to fine-tune the pre-trained model on one of
Area 1-5 of S3DIS dataset each time and evaluate the model
on Area 6. Table 1 summarizes the main results.

Consistent with the conclusion detailed in Sect. 5.3 of
the main text, the DGCNN model, pre-trained on ShapeNet,
achieves comparable performance set by the ScanNet pre-
trained ones, which echoes our hypothesis mentioned in
the main text: The model benefits from more diverse and
cleaner shapes in ShapeNet to master basic spatial struc-
tures. Such learned low-level knowledge helps boost per-
formance in downstream tasks, despite these downstream
tasks being carried out on more complicated scenes.

Table 1: Ablation Study: cross-domain generalizability.
We transfer the ShapeNet pre-trained DGCNN model to the
3D semantic segmentation task on S3DIS.

Fine-tuning Area Method Acc. mIoU

Area 1 (3687 samples)
from scratch 84.57% 57.85

STRL (ScanNet) 85.28% 59.15
STRL (ShapeNet) 84.85% 59.11

Area 2 (4440 samples)
from scratch 70.56% 38.86

STRL (ScanNet) 72.37% 39.21
STRL (ShapeNet) 70.45% 38.66

Area 3 (1650 samples)
from scratch 77.68% 49.49

STRL (ScanNet) 79.12% 51.88
STRL (ShapeNet) 78.96% 51.03

Area 4 (3662 samples)
from scratch 73.55% 38.50

STRL (ScanNet) 73.81% 39.28
STRL (ShapeNet) 74.42% 40.58

Area 5 (6852 samples)
from scratch 76.85% 48.63

STRL (ScanNet) 77.28% 49.53
STRL (ShapeNet) 78.53% 50.55

3. Representation Robustness
We disturb the input of the ModelNet40 data and ap-

ply the linear SVM on the representations extracted by
Pre-trained. The results with different disturbances are: (1)
cutout: 86.91, (2) crop: 74.59, (3) jitter the points: 87.97,
and (4) add noisy points: 82.33.

4. Alternative Framework
We design our STRL framework based on Grill et al. [2].

In comparison, our spatio-temporal self-supervised repre-
sentation learning can also well fit other contrastive meth-
ods. Below, we present results by adopting an alternative
framework, SimCLR [1], on the linear shape classification
tasks with PointNet backbone. This task is representative
as it can directly reflect the efficacy of the learned repre-
sentations. We experiment with different batch sizes during
pre-training; Table 2 tabulates main results. It reveals that a
comparable performance (0.1% - 0.5% performance drop)
is also achieved using the SimCLR framework, which well
demonstrates the compatibility of the proposed STRL. We
also find that our method is stable on different batch sizes
in the range between 32 and 1024 and achieves the best per-
formance between 64 and 512.
Table 2: Alternative Frameworks: SimCLR v.s. BYOL.
We pre-train the PointNet model separately with SimCLR
and BYOL framework. The results are evaluated with a lin-
ear SVM classifier on the ModelNet40 dataset. We pre-train
the model with different batch sizes.

Framework Different batch sizes during pre-training
32 48 64 128 256 512 1024

BYOL 88.0% 88.1% 88.4% 88.2% 88.1% 88.4% 87.8%
SimCLR 87.9% 87.9% 88.1% 88.0% 87.6% 88.2% 87.6%

2



References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 2

[2] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020. 1, 2

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[4] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas.
Deep hough voting for 3d object detection in point clouds. In
Proceedings of International Conference on Computer Vision

(ICCV), 2019. 2
[5] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 1

[6] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-voxel
feature set abstraction for 3d object detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[7] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 38(5):1–12, 2019. 1

[8] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd
batch size to 32k for imagenet training. arXiv preprint
arXiv:1708.03888, 2017. 1

3


