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Abstract

Holistic 3D indoor scene understanding refers to jointly recovering the i) object
bounding boxes, ii) room layout, and iii) camera pose, all in 3D. The existing
methods either are ineffective or only tackle the problem partially. In this paper,
we propose an end-to-end model that simultaneously solves all three tasks in real-
time given only a single RGB image. The essence of the proposed method is to
improve the prediction by i) parametrizing the targets (e.g., 3D boxes) instead of
directly estimating the targets, and ii) cooperative training across different modules
in contrast to training these modules individually. Specifically, we parametrize
the 3D object bounding boxes by the predictions from several modules, i.e., 3D
camera pose and object attributes. The proposed method provides two major
advantages: i) The parametrization helps maintain the consistency between the
2D image and the 3D world, thus largely reducing the prediction variances in
3D coordinates. ii) Constraints can be imposed on the parametrization to train
different modules simultaneously. We call these constraints "cooperative losses" as
they enable the joint training and inference. We employ three cooperative losses
for 3D bounding boxes, 2D projections, and physical constraints to estimate a
geometrically consistent and physically plausible 3D scene. Experiments on the
SUN RGB-D dataset shows that the proposed method significantly outperforms
prior approaches on 3D object detection, 3D layout estimation, 3D camera pose
estimation, and holistic scene understanding.

1 Introduction
Holistic 3D scene understanding from a single RGB image is a fundamental yet challenging computer
vision problem, while humans are capable of performing such tasks effortlessly within 200 ms [Potter,
1975, 1976, Schyns and Oliva, 1994, Thorpe et al., 1996]. The primary difficulty of the holistic 3D
scene understanding lies in the vast, but ambiguous 3D information attempted to recover from a
single RGB image. Such estimation includes three essential tasks:

• The estimation of the 3D camera pose that captures the image. This component helps to maintain
the consistency between the 2D image and the 3D world.

• The estimation of the 3D room layout. Combining with the estimated 3D camera pose, it recovers a
global geometry.

• The estimation of the 3D bounding boxes for each object in the scene, recovering the local details.

Most current methods either are inefficient or only tackle the problem partially. Specifically,

• Traditional methods [Gupta et al., 2010, Zhao and Zhu, 2011, 2013, Choi et al., 2013, Schwing et al.,
2013, Zhang et al., 2014, Izadinia et al., 2017, Huang et al., 2018] apply sampling or optimization
methods to infer the geometry and semantics of indoor scenes. However, those methods are
computationally expensive; it usually takes a long time to converge and could be easily trapped in
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Figure 1: Overview of the proposed framework for cooperative holistic scene understanding. (a) We
first detect 2D objects and generate their bounding boxes, given a single RGB image as the input,
from which (b) we can estimate 3D object bounding boxes, 3D room layout, and 3D camera pose.
The blue bounding box is the estimated 3D room layout. (c) We project 3D objects to the image plane
with the learned camera pose, forcing the projection from the 3D estimation to be consistent with 2D
estimation.

an unsatisfactory local minimum, especially for cluttered indoor environments. Thus both stability
and scalability become issues.

• Recently, researchers attempt to tackle this problem using deep learning. The most straightforward
way is to directly predict the desired targets (e.g., 3D room layouts or 3D bounding boxes) by
training the individual modules separately with isolated losses for each module. Thereby, the prior
work [Mousavian et al., 2017, Lee et al., 2017, Kehl et al., 2017, Kundu et al., 2018, Zou et al.,
2018, Liu et al., 2018] only focuses on the individual tasks or learn these tasks separately rather
than jointly inferring all three tasks, or only considers the inherent relations without explicitly
modeling the connections among them [Tulsiani et al., 2018].

• Another stream of approach takes both an RGB-D image and the camera pose as the input [Lin
et al., 2013, Song and Xiao, 2014, 2016, Song et al., 2017, Deng and Latecki, 2017, Zou et al.,
2017, Qi et al., 2018, Lahoud and Ghanem, 2017, Zhang et al., 2017a], which provides sufficient
geometric information from the depth images, thereby relying less on the consistency among
different modules.

In this paper, we aim to address the missing piece in the literature: to recover a geometrically
consistent and physically plausible 3D scene and jointly solve all three tasks in an efficient and
cooperative way, only from a single RGB image. Specifically, we tackle three important problems:

1. 2D-3D consistency A good solution to the aforementioned three tasks should maintain a high
consistency between the 2D image plane and the 3D world coordinate. How should we design a
method to achieve such consistency?

2. Cooperation Psychological studies have shown that our biologic perception system is extremely
good at rapid scene understanding [Schyns and Oliva, 1994], particularly utilizing the fusion of
different visual cues [Landy et al., 1995, Jacobs, 2002]. Such findings support the necessities of
cooperatively solving all the holistic scene tasks together. Can we devise an algorithm such that it
can cooperatively solve these tasks, making different modules reinforce each other?

3. Physically Plausible As humans, we excel in inferring the physical attributes and dynamics
[Kubricht et al., 2017]. Such a deep understanding of the physical environment is imperative,
especially for an interactive agent (e.g., a robot) to navigate the environment or collaborate with a
human agent. How can the model estimate a 3D scene in a physically plausible fashion, or at least
have some sense of physics?

To address these issues, we propose a novel parametrization of the 3D bounding box as well as a set
of cooperative losses. Specifically, we parametrize the 3D boxes by the predicted camera pose and
object attributes from individual modules. Hence, we can construct the 3D boxes starting from the
2D box centers to maintain a 2D-3D consistency, rather than predicting 3D coordinates directly or
assuming the camera pose is given, which loses the 2D-3D consistency.

Cooperative losses are further imposed on the parametrization in addition to the direct losses to enable
the joint training of all the individual modules. Specifically, we employ three cooperative losses on
the parametrization to constrain the 3D bounding boxes, projected 2D bounding boxes, and physical
plausibility, respectively:

• The 3D bounding box loss encourages accurate 3D estimation.
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Figure 2: Illustration of (a) network architecture and (b) parametrization of 3D object bounding box.

• The differentiable 2D projection loss measures the consistency between 3D and 2D bounding
boxes, which permits our networks to learn the 3D structures with only 2D annotations (i.e., no 3D
annotations are required). In fact, we can directly supervise the learning process with 2D objects
annotations using the common sense of the object sizes.

• The physical plausibility loss penalizes the intersection between the reconstructed 3D object boxes
and the 3D room layout, which prompts the networks to yield a physically plausible estimation.

Figure 1 shows the proposed framework for cooperative holistic scene understanding. Our method
starts with the detection of 2D object bounding boxes from a single RGB image. Two branches of
convolutional neural networks are employed to learn the 3D scene from both the image and 2D boxes:
i) The global geometry network (GGN) learns the global geometry of the scene, predicting both the
3D room layout and the camera pose. ii) The local object network (LON) learns the object attributes,
estimating the object pose, size, distance between the 3D box center and camera center, and the 2D
offset from the 2D box center to the projected 3D box center on the image plane. The details are
discussed in Section 2. By combining the camera pose from the GGN and object attributes from the
LON, we can parametrize 3D bounding boxes, which grants jointly learning of both GGN and LON
with 2D and 3D supervisions.

Another benefit of the proposed parametrization is improving the training stability by reducing the
variance of the 3D boxes prediction, due to that i) the estimated 2D offset has relatively low variance,
and ii) we adopt a hybrid of classification and regression method to estimate the variables of large
variances, inspired by [Ren et al., 2015, Mousavian et al., 2017, Qi et al., 2018].

We evaluate our method on SUN RGB-D Dataset [Song et al., 2015]. The proposed method out-
performs previous methods on four tasks, including 3D layout estimation, 3D object detection, 3D
camera pose estimation, and holistic scene understanding. Our experiments demonstrate that a coop-
erative method performing holistic scene understanding tasks can significantly outperform existing
methods tackling each task in isolation, further indicating the necessity of joint training.

Our contributions are four-fold. i) We formulate an end-to-end model for 3D holistic scene under-
standing tasks. The essence of the proposed model is to cooperatively estimate 3D room layout,
3D camera pose, and 3D object bounding boxes. ii) We propose a novel parametrization of the 3D
bounding boxes and integrate physical constraint, enabling the cooperative training of these tasks.
iii) We bridge the gap between the 2D image plane and the 3D world by introducing a differentiable
objective function between the 2D and 3D bounding boxes. iv) Our method significantly outperforms
the state-of-the-art methods and runs in real-time.

2 Method
In this section, we describe the parametrization of the 3D bounding boxes and the neural networks
designed for the 3D holistic scene understanding. The proposed model consists of two networks,
shown in Figure 2: a global geometric network (GGN) that estimates the 3D room layout and camera
pose, and a local object network (LON) that infers the attributes of each object. Based on these two
networks, we further formulate differentiable loss functions to train the two networks cooperatively.

2.1 Parametrization

3D Objects We use the 3D bounding box XW ∈ R3×8 as the representation of the estimated 3D
object in the world coordinate. The 3D bounding box is described by its 3D center CW ∈ R3, size
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SW ∈ R3, and orientation R(θW ) ∈ R3×3: XW = h(CW , R(θW ), S), where θ is the heading angle
along the up-axis, and h(·) is the function that composes the 3D bounding box.

Without any depth information, estimating 3D object center CW directly from the 2D image may
result in a large variance of the 3D bounding box estimation. To alleviate this issue and bridge the gap
between 2D and 3D object bounding boxes, we parametrize the 3D center CW by its corresponding
2D bounding box center CI ∈ R2 on the image plane, distance D between the camera center and
the 3D object center, the camera intrinsic parameter K ∈ R3×3, and the camera extrinsic parameters
R(φ, ψ) ∈ R3×3 and T ∈ R3, where φ and ψ are the camera rotation angles. As illustrated in
Figure 2(b), since each 2D bounding box and its corresponding 3D bounding box are both manually
annotated, there is always an offset δI ∈ R2 between the 2D box center and the projection of 3D box
center. Therefore, the 3D object center CW can be computed as

CW = T +DR(φ, ψ)−1 K−1
[
CI + δI , 1

]T∥∥∥K−1 [CI + δI , 1]
T
∥∥∥ . (1)

Since T becomes ~0 when the data is captured from the first-person view, the above equation could be
written as CW = p(CI , δI , D, φ, ψ,K), where p is a differentiable projection function.

In this way, the parametrization of the 3D object bounding box unites the 3D object center CW and
2D object center CI , which helps maintain the 2D-3D consistency and reduces the variance of the 3D
bounding box estimation. Moreover, it integrates both object attributes and camera pose, promoting
the cooperative training of the two networks.

3D Room Layout Similar to 3D objects, we parametrize 3D room layout in the world coordinate
as a 3D bounding box XL ∈ R3×8, which is represented by its 3D center CL ∈ R3, size SL ∈ R3,
and orientation R(θL) ∈ R3×3, where θL is the rotation angle. In this paper, we estimate the room
layout center by predicting the offset from the pre-computed average layout center.

2.2 Direct Estimations

As shown in Figure 2(a), the global geometry network (GGN) takes a single RGB image as the input,
and predicts both 3D room layout and 3D camera pose. Such design is driven by the fact that the
estimations of both the 3D room layout and 3D camera pose rely on low-level global geometric
features. Specifically, GGN estimates the center CL, size SL, and the heading angle θL of the 3D
room layout, as well as the two rotation angles φ and ψ for predicting the camera pose.

Meanwhile, the local object network (LON) takes 2D image patches as the input. For each object,
LON estimates object attributes including distance D, size SW , heading angle θW , and the 2D offsets
δI between the 2D box center and the projection of the 3D box center.

Direct estimations are supervised by two losses LGGN and LLON. Specifically, LGGN is defined as

LGGN = Lφ + Lψ + LCL + LSL + LθL , (2)

and LLON is defined as

LLON =
1

N

N∑
j=1

(LDj
+ LδIj + LSW

j
+ LθWj ), (3)

where N is the number of objects in the scene. In practice, directly regressing objects’ attributes
(e.g., heading angle) may result in a large error. Inspired by [Ren et al., 2015, Mousavian et al., 2017,
Qi et al., 2018], we adopt a hybrid method of classification and regression to predict the sizes and
heading angles. Specifically, we pre-define several size templates or equally split the space into a set
of angle bins. Our model first classifies size and heading angles to those pre-defined categories, and
then predicts residual errors within each category. For example, in the case of the rotation angle φ,
we define Lφ = Lφ−cls + Lφ−reg . Softmax is used for classification and smooth-L1 (Huber) loss is
used for regression.

2.3 Cooperative Estimations

Psychological experiments have shown that human perception of the scene often relies on global
information instead of local details, known as the gist of the scene [Oliva, 2005, Oliva and Torralba,
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2006]. Furthermore, prior studies have demonstrated that human perceptions on specific tasks involve
the cooperation from multiple visual cues, e.g., on depth perception [Landy et al., 1995, Jacobs,
2002]. These crucial observations motivate the idea that the attributes and properties are naturally
coupled and tightly bounded, thus should be estimated cooperatively, in which individual component
would help to boost each other.

Using the parametrization described in Subsection 2.1, we hope to cooperatively optimize GGN and
LON, simultaneously estimating 3D camera pose, 3D room layout, and 3D object bounding boxes, in
the sense that the two networks enhance each other and cooperate to make the definitive estimation
during the learning process. Specifically, we propose three cooperative losses which jointly provide
supervisions and fuse 2D/3D information into a physically plausible estimation. Such cooperation
improves the estimation accuracy of 3D bounding boxes, maintains the consistency between 2D and
3D, and generates a physically plausible scene. We further elaborate on these three aspects below.

3D Bounding Box Loss As neither GGN or LON is directly optimized for the accuracy of the
final estimation of the 3D bounding box, learning directly through GGN and LON is evidently not
sufficient, thus requiring additional regularization. Ideally, the estimation of the object attributes
and camera pose should be cooperatively optimized, as both contribute to the estimation of the 3D
bounding box. To achieve this goal, we propose the 3D bounding box loss with respect to its 8 corners

L3D =
1

N

N∑
j=1

∥∥h(CWj , R(θj), Sj)−XW∗
j

∥∥2
2
, (4)

where XW∗ is the ground truth 3D bounding boxes in the world coordinate. Qi et al. [2018] proposes
a similar regularization in which the parametrization of 3D bounding boxes is different.

2D Projection Loss In addition to the 3D parametrization of the 3D bounding boxes, we further
impose an additional consistency as the 2D projection loss, which maintains the coherence between
the 2D bounding boxes in the image plane and the 3D bounding boxes in the world coordinate.
Specifically, we formulate the learning objective of the projection from 3D to 2D as

LPROJ =
1

N

N∑
j=1

∥∥f(XW
j , R,K)−XI∗

j

∥∥2
2
, (5)

where f(·) denotes a differentiable projection function which projects a 3D bounding box to a 2D
bounding box, and XI∗

j ∈ R2×4 is the 2D object bounding box (either detected or the ground truth).

Physical Loss In the physical world, 3D objects and room layout should not intersect with each
other. To produce a physically plausible 3D estimation of a scene, we integrate the physical loss that
penalizes the physical violations between 3D objects and 3D room layout

LPHY =
1

N

N∑
j=1

(
ReLU(Max(XW

j )−Max(XL)) + ReLU(Min(XL)−Min(XW
j ))

)
, (6)

where ReLU is the activate function, Max(·) / Min(·) takes a 3D bounding box as the input and
outputs the max/min value along three world axes. By adding the physical constraint loss, the proposed
model connects the 3D environments and the 3D objects, resulting in a more natural estimation of
both 3D objects and 3D room layout.

To summarize, the total loss can be written as

LTotal = LGGN + LLON + λCOOP (L3D + LPROJ + LPHY) , (7)

where λCOOP is the trade-off parameter that balances the cooperative losses and the direct losses.

3 Implementation
Both the GGN and LON adopt ResNet-34 [He et al., 2016] architecture as the encoder, which encodes
a 256x256 RGB image into a 2048-D feature vector. As each of the networks consists of multiple
output channels, for each channel with an L-dimensional output, we stack two fully connected layers
(2048-1024, 1024-L) on top of the encoder to make the prediction.
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Figure 3: Qualitative results (top 50%). (Left) Original RGB images. (Middle) Results projected in
2D. (Right) Results in 3D. Note that the depth input is only used to visualize the 3D results.

We adopt a two-step training procedure. First, we fine-tune the 2D detector [Dai et al., 2017, Bodla
et al., 2017] with 30 most common object categories to generate 2D bounding boxes. The 2D and 3D
bounding box are matched to ensure each 2D bounding box has a corresponding 3D bounding box.

Second, we train two 3D estimation networks. To obtain good initial networks, both GGN and LON
are first trained individually using the synthetic data (SUNCG dataset [Song et al., 2017]) with
photo-realistically rendered images Zhang et al. [2017b]. We then fix six blocks of the encoders of
GGN and LON, respectively, and fine-tune the two networks jointly on SUN RGBD dataset [Song
et al., 2015].

To avoid over-fitting, a data augmentation procedure is performed by randomly flipping the images or
randomly shifting the 2D bounding boxes with corresponding labels during the cooperative training.
We use Adam [Kingma and Ba, 2015] for optimization with a batch size of 1 and a learning rate of
0.0001. In practice, we train the two networks cooperatively for ten epochs, which takes about 10
minutes for each epoch. We implement the proposed approach in PyTorch [Paszke et al., 2017].

4 Evaluation
We evaluate our model on SUN RGB-D dataset [Song et al., 2015], including 5050 test images and
10335 images in total. The SUN RGB-D dataset has 47 scene categories with high-quality 3D room
layout, 3D camera pose, and 3D object bounding boxes annotations. It also provides benchmarks
for various 3D scene understanding tasks. Here, we only use the RGB images as the input. Figure 3
shows some qualitative results. We discard the rooms with no detected 2D objects or invalid 3D room
layout annotation, resulting in a total of 4783 training images and 4220 test images. More results can
be found in the supplementary materials.

We evaluate our model on five tasks: i) 3D layout estimation, ii) 3D object detection, iii) 3D box
estimation iv) 3D camera pose estimation, and v) holistic scene understanding, all with the test images
across all scene categories. For each task, we compare our cooperatively trained model with the
settings in which we train GGN and LON individually without the proposed parametrization of 3D
object bounding box or cooperative losses. In the individual training setting, LON directly estimates
the 3D object centers in the 3D world coordinate.

3D Layout Estimation Since SUN RGB-D dataset provides the ground truth of 3D layout with
arbitrary numbers of polygon corners, we parametrize each 3D room layout as a 3D bounding box by
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Table 1: Comparison of 3D room layout estimation and holistic scene understanding on SUN RGB-D.

Method 3D Layout Estimation Holistic Scene Understanding
IoU Pg Rg Rr IoU

3DGP [Choi et al., 2013] 19.2 2.1 0.7 0.6 13.9
HoPR [Huang et al., 2018] 54.9 37.7 23.0 18.3 40.7
Ours (individual) 55.4 36.8 22.4 20.1 39.6
Ours (cooperative) 56.9 49.3 29.7 28.5 42.9

Table 2: Comparisons of 3D object detection on SUN RGB-D.
Method bed chair sofa table desk toilet bin sink shelf lamp mAP
Choi et al. [2013] 5.62 2.31 3.24 1.23 - - - - - - -
Huang et al. [2018] 58.29 13.56 28.37 12.12 4.79 16.50 0.63 2.18 1.29 2.41 14.01
Ours (individual) 53.08 7.7 27.04 22.80 5.51 28.07 0.54 5.08 2.58 0.01 15.24
Ours (cooperative) 63.58 17.12 41.22 26.21 9.55 58.55 10.19 5.34 3.01 1.75 23.65

taking the output of the Manhattan Box baseline from [Song et al., 2015] with eight layout corners,
which serves as the ground truth. We compare the estimation of the proposed model with three
previous methods—3DGP [Choi et al., 2013], IM2CAD [Izadinia et al., 2017] and HoPR [Huang
et al., 2018]. Following the evaluation protocol defined in [Song et al., 2015], we compute the average
Intersection over Union (IoU) between the free space of the ground truth and the free space estimated
by the proposed method. Table 1 shows our model outperforms HoPR by 2.0%. The results further
show that there is an additional 1.5% performance improvement compared with individual training,
demonstrating the efficacy of our method. Note that IM2CAD [Izadinia et al., 2017] manually selected
484 images from 794 test images of living rooms and bedrooms. For fair comparisons, we evaluate
our method on the entire set of living room and bedrooms, outperforming IM2CAD by 2.1%.

3D Object Detection We evaluate our 3D object detection results using the metrics defined in [Song
et al., 2015]. Specifically, the mean average precision (mAP) is computed using the 3D IoU between
the predicted and the ground truth 3D bounding boxes. In the absence of depth, the threshold of IoU
is adjusted from 0.25 (evaluation setting with depth image input) to 0.15 to determine whether two
bounding boxes are overlapped. The 3D object detection results are reported in Table 2. We report 10
out of 30 object categories here, and the rest are reported in the supplementary materials. The results
indicate our method outperforms HoPR by 9.64% on mAP and improves the individual training result
by 8.41%. Compared with the model using individual training, the proposed cooperative model makes
a significant improvement, especially on small objects such as bins and lamps. The accuracy of the
estimation easily influences 3d detection of small objects; oftentimes, it is nearly impossible for prior
approaches to detect. In contrast, benefiting from the parametrization method and 2D projection loss,
the proposed cooperative model maintains the consistency between 3D and 2D, substantially reducing
the estimation variance. Note that although IM2CAD also evaluates the 3D detection, they use a
metric related to a specific distance threshold. For fair comparisons, we further conduct experiments
on the subset of living rooms and bedrooms, using the same object categories with respect to this
particular metric rather than an IoU threshold. We obtain an mAP of 78.8%, 4.2% higher than the
results reported in IM2CAD.

3D Box Estimation The 3D object detection performance of our model is determined by both
the 2D object detection and the 3D bounding box estimation. We first evaluate the accuracy of the
3D bounding box estimation, which reflects the ability to predict 3D boxes from 2D image patches.
Instead of using mAP, 3D IoU is directly computed between the ground truth and the estimated
3D boxes for each object category. To evaluate the 2D-3D consistency, the estimated 3D boxes are
projected back to 2D, and the 2D IoU is evaluated between the projected and detected 2D boxes.
Results using the full model are reported in Table 3, which shows 3D estimation is still under
satisfactory, despite the efforts to maintain a good 2D-3D consistency. The underlying reason for the
gap between 3D and 2D performance is the increased estimation dimension. Another possible reason
is due to the lack of context relations among objects. Results for all object categories can be found in
the supplementary materials.

Table 3: 3D box estimation results on SUN RGB-D.
bed chair sofa table desk toilet bin sink shelf lamp mIoU

IoU (3D) 33.1 15.7 28.0 20.8 15.6 25.1 13.2 9.9 6.9 5.9 17.4
IoU (2D) 75.7 68.1 74.4 71.2 70.1 72.5 69.7 59.3 62.1 63.8 68.7
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Table 4: Comparisons of 3D camera pose estimation on SUN RGB-D.

Method Mean Absolute Error (degree)
yaw roll

Hedau et al. [2009] 3.45 33.85
Huang et al. [2018] 3.12 7.60
Ours (individual) 2.48 4.56
Ours (cooperative) 2.19 3.28

Camera Pose Estimation We evaluate the camera pose by computing the mean absolute error of
yaw and roll between the model estimation and ground truth. As shown in Table 4, comparing with the
traditional geometry-based method [Hedau et al., 2009] and previous learning-based method [Huang
et al., 2018], the proposed cooperative model gains a significant improvement. It also improves the
individual training performance with 0.29 degree on yaw and 1.28 degree on roll.

Holistic Scene Understanding Per definition introduced in [Song et al., 2015], we further estimate
the holistic 3D scene including 3D objects and 3D room layout on SUN RGB-D. Note that the holistic
scene understanding task defined in [Song et al., 2015] misses 3D camera pose estimation compared
to the definition in this paper, as the results are evaluated in the world coordinate.

Using the metric proposed in [Song et al., 2015], we evaluate the geometric precision Pg, the
geometric recall Rg , and the semantic recall Rr with the IoU threshold set to 0.15. We also evaluate
the IoU between free space (3D voxels inside the room polygon but outside any object bounding
box) of the ground truth and the estimation. Table 1 shows that we improve the previous approaches
by a significant margin. Moreover, we further improve the individually trained results by 8.8%
on geometric precision, 5.6% on geometric recall, 6.6% on semantic recall, and 3.7% on free
space estimation. The performance gain of total scene understanding directly demonstrates that the
effectiveness of the proposed parametrization method and cooperative learning process.

5 Discussion
In the experiment, the proposed method outperforms the state-of-the-art methods on four tasks.
Moreover, our model runs at 2.5 fps (0.4s for 2D detection and 0.02s for 3D estimation) on a single
Titan Xp GPU, while other models take significantly much more time; e.g., [Izadinia et al., 2017] takes
about 5 minutes to estimate one image. Here, we further analyze the effects of different components in
the proposed cooperative model, hoping to shed some lights on how parametrization and cooperative
training help the model using a set of ablative analysis.

5.1 Ablative Analysis

We compare four variants of our model with the full model trained using LSUM:

1. The model trained without the supervision on 3D object bounding box corners (w/o L3D, S1).
2. The model trained without the 2D supervision (w/o LPROJ, S2).
3. The model trained without the penalty of physical constraint (w/o LPHY, S3).
4. The model trained in an unsupervised fashion where we only use 2D supervision to estimate the

3D bounding boxes (w/o L3D + LGGN + LLON, S4).

Additionally, we compare two variants of training settings: i) the model trained directly on SUN
RGB-D without pre-train (S5), and ii) the model trained with 2D bounding boxes projected from
ground truth 3D bounding boxes (S6). We conduct the ablative analysis over all the test images on
the task of holistic scene understanding. We also compare the 3D mIoU and 2D mIoU of 3D box
estimation. Table 5 summarizes the quantitative results.

Table 5: The ablative analysis of the proposed cooperative model on SUN RGB-D. We evaluate
holistic scene understanding, 3D mIoU and 2D mIoU of box estimation under different settings.

Setting S1 S2 S3 S4 S5 S6 Full
IoU 42.8 42.0 41.7 35.9 40.2 43.0 43.3
Pg 41.8 48.3 47.2 28.1 36.3 45.4 46.5
Rg 25.3 30.1 27.5 17.1 22.1 29.7 28.0
Rr 23.8 28.7 26.4 15.6 20.6 27.1 26.7
3D mIoU 14.4 18.2 17.3 9.8 12.7 17.0 17.4
2D mIoU 65.2 60.7 68.5 64.3 65.3 67.7 68.7
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(a) Full model (b) Model without 2D supervision (c) Model without  3D supervision(a) Full model (b) Model without 2D supervision (c) Model without  3D supervision

Figure 4: Comparison with two variants of our model.

Experiment S1 and S3 Without the supervision on 3D object bounding box corners or physical
constraint, the performance of all the tasks decreases since it removes the cooperation between the
two networks.

Experiment S2 The performance on the 3D detection is improved without the projection loss,
while the 2D mIoU decreases by 8.0%. As shown in Figure 4(b), a possible reason is that the 2D-3D
consistency LPROJ may hurt the performance on 3D accuracy compared with directly using 3D
supervision, while the 2D performance is largely improved thanks to the consistency.

Experiment S4 The training entirely in an unsupervised fashion for 3D bounding box estimation
would fail since each 2D pixel could correspond to an infinite number of 3D points. Therefore, we
integrate some common sense into the unsupervised training by restricting the size of the object close
to the average size. As shown in Figure 4(c), we can still estimate the 3D bounding box without 3D
supervision quite well, although the orientations are usually not accurate.

Experiment S5 and S6 S5 demonstrates the efficiency of using a large amount of synthetic training
data, and S6 indicates that we can gain almost the same performance even if there are no 2D bounding
box annotations.

5.2 Related Work

Single Image Scene Reconstruction Existing 3D scene reconstruction approaches fall into two
streams. i) Generative approaches model the reconfigurable graph structures in generative probabilistic
models [Zhao and Zhu, 2011, 2013, Choi et al., 2013, Lin et al., 2013, Guo and Hoiem, 2013, Zhang
et al., 2014, Zou et al., 2017, Huang et al., 2018]. ii) Discriminative approaches [Izadinia et al.,
2017, Tulsiani et al., 2018, Song et al., 2017] reconstruct the 3D scene using the representation
of 3D bounding boxes or voxels through direct estimations. Generative approaches are better at
modeling and inferring scenes with complex context, but they rely on sampling mechanisms and are
always computational ineffective. Compared with prior discriminative approaches, our model focus
on establishing cooperation among each scene module.

Gap between 2D and 3D It is intuitive to constrain the 3D estimation to be consistent with 2D
images. Previous research on 3D shape completion and 3D object reconstruction explores this idea
by imposing differentiable 2D-3D constraints between the shape and silhouettes [Wu et al., 2016,
Rezende et al., 2016, Yan et al., 2016, Tulsiani and Malik, 2015, Wu et al., 2017]. Mousavian et al.
[2017] infers the 3D bounding boxes by matching the projected 2D corners in autonomous driving. In
the proposed cooperative model, we introduce the parametrization of the 3D bounding box, together
with a differentiable loss function to impose the consistency between 2D-3D bounding boxes for
indoor scene understanding.

6 Conclusion
Using a single RGB image as the input, we propose an end-to-end model that recovers a 3D indoor
scene in real-time, including the 3D room layout, camera pose, and object bounding boxes. A
novel parametrization of 3D bounding boxes and a 2D projection loss are introduced to enforce the
consistency between 2D and 3D. We also design differentiable cooperative losses which help to train
two major modules cooperatively and efficiently. Our method shows significant improvements in
various benchmarks while achieving high accuracy and efficiency.
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2-4029, ONR MURI grant N00014-16-1-2007, ARO grant W911NF-18-1-0296, and an NVIDIA
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